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Abstract
A new model is proposed to describe the non-Arrhenius conductivity observed
in a series of optimized fast ion-conducting silver thioborosilicate glasses. Its
essential feature is that the mobile cations are thought to conduct from one open
site to the next open available site and, in this process, naturally by-pass filled or
unavailable sites. The thermal excitation of cations out of their equilibrium sites
is taken to be the mechanism for generating the open and available anion sites.
Hence, the mean free path for a drifting cation between open available sites
is directly proportional to the activated carrier concentration and is therefore a
strong function of temperature. There is also a weak temperature dependence
for the mean free path that arises because the capture cross section for a drifting
cation by a stationary anion trap varies with drift velocity, e.g. the momentum of
a fast cation allows it to closely approach an anion trap while avoiding capture
or back scattering. The capture cross section of a cation by an anion trap is
large because the interaction is electrostatic rather than geometric in origin.
The model is shown to be in good agreement with all of our experimental
data for silver thioborosilicate glasses and all model parameters are physically
defined and reasonable in value. The model predicts a simple high-temperature
conductivity dependence that is not exponential in nature. The model is also
proposed to be valid for other materials such as crystalline conductors.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ion-conducting glasses are of high interest due to their potential use as solid electrolytes in
battery applications where they have several advantages over their crystalline counterparts.
For example, they have an isotropic conductivity and an absence of grain boundaries and their
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wide compositional flexibility allows for the optimization of electrolyte properties. Glasses can
also be fabricated into complex shapes such as thin films and very small batteries made using
ion-conducting thin film glasses; these should enable new applications in microelectronics.
Comprehensive studies of the variation of the ionic conductivity with temperature,composition
and structure are the key to understanding transport phenomena in glasses [1–11].

Recently, Kincs and Martin [12] reported the discovery of fast ion-conducting (FIC)
glasses in the AgI–Ag2S–B2S3–SiS2 (silver thioborosilicate) system. This complex system
was specifically chosen by using known relationships for the composition dependence of the
ionic conductivity in an effort to develop the highest ionically conducting glass to date. As
a result, the glasses produced in this system have exhibited record high room-temperature
ionic conductivities as well as good chemical stability, a known challenge for chalcogenide
systems. More recently, Schrooten has re-examined this series of glasses by measuring the
conductivity to higher temperatures and carefully inspecting them for phase separation and
crystallization [13].

While ionic conductivities as high as 10−2(� cm)−1 at room temperature have been
measured in the silver thioborosilicate system, a strong non-Arrhenius temperature dependence
decreases the conductivity to several orders of magnitude lower than that expected from the
observed Arrhenius behaviour at low temperatures (LTs). This behaviour is not exclusive
to the silver thioborosilicate system: it has also been observed in, for example, glassy
Ag7I4AsO4 [14].

Several researchers have postulated explanations for this non-Arrhenius behaviour.
Maass et al [15] believe that it arises as the result of Coulombic interactions between the
silver ions at higher temperatures. Ngai and Rizos [16] have used their coupling model to
interpret the data and suggest that the observed behaviour is indicative of an upper limit for
the ionic conductivity in a glass. While accurately describing the non-Arrhenius behaviour of
the conductivity, these models have yet to provide a physical picture of its root cause.

This paper proposes a new model wherein the non-Arrhenius behaviour is caused by
frequent mobile cation trapping events that result from a rapidly increasing number of ‘open’
anion sites in the glass with increasing temperature. At LTs, open sites are less numerous due
to the low thermal probability of creating activated cations which therefore conduct from site
to site over relatively large distances. At higher temperatures, and in the range of the non-
Arrhenius temperature dependence, the fraction of open sites increases, along with an equal
fraction of mobile cations, and thermally activated carriers are more likely to find a nearby
trap. It is believed that this higher efficiency of cation trapping at elevated temperatures leads
to the non-Arrhenius ionic conductivity.

2. Model development

2.1. Background
Mobile cations in compositionally optimized glasses, such as those being examined here,
are considered to conduct from site to site by the well-known thermally activated hopping
mechanism [17]. The cation sites are assumed to be characterized by bond distances,
coordination numbers and overall site chemistry that vary from site to site. This creates a
distribution of energy barriers, which is symmetric about a mean with a well-defined standard
deviation, that governs the kinetics of the mobile cations [18]. The number of such cations
available for conduction at any one temperature is likewise considered to be given by a
summation over a well-known and accepted Boltzmann distribution of energy barriers.

In this way, the conduction process at LTs, kB T � �Eact , where �Eact is some average
of the barrier distribution, is described by a relatively small number of thermally activated
cations migrating with a relatively low drift velocity (determined by temperature) through a
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disordered glassy network that has a relatively small number of ‘open’ anion sites, hereafter
referred to as ‘traps’. The conduction process must in this view be characterized as the cations
exploring a significant fraction of the interstitial sites in the glass along their way towards
finding a trapping site.

As the temperature is increased, the number of thermally activated mobile cations increases
according to Boltzmann statistics. This likewise creates an increasing number of traps. Hence,
at higher temperatures, the conduction process is characterized by greater numbers of mobile
cations migrating with a higher drift velocity through the glass network where the traps are
significantly greater in number and therefore closer together. In this view, the conductivity
becomes a compromise between the number of activated carriers and the number of traps,
the former working to increase and the latter working to decrease the conductivity. The non-
Arrhenius conductivity then arises from the simple fact that, in the optimized glasses, these two
competing effects are seen to the full. At LTs, the thermal activation of carriers is the dominant
factor, thereby increasing the conductivity in an Arrhenius manner. At higher temperatures, the
large number of traps has a dominant effect, thereby creating the non-Arrhenius conductivity.

In the following, a simple one-parameter model is developed that captures the essence
of this description of the conduction process. The fundamentally important finding is that
the carriers conduct for relatively large distances (tens of nanometres) between traps in these
glasses, not because they are highly conducting FIC materials but rather because they are
required to do so because the average barrier height relative to kB T is sufficiently large
(T ∼ 500 K versus �Eact/kB ∼ 2000 K) that even at high temperatures the number of
mobile carriers is actually quite small (typically � 1%). This forces, on average, the trapping
sites to be relatively widely spaced. The trap separation is, nevertheless, strongly temperature
dependent, decreasing with increasing temperature. This gives rise to a strongly temperature-
dependent trapping of the mobile carriers which in turn leads to a strongly temperature-
dependent conductivity. The conductivity exhibits a non-Arrhenius temperature dependence
due to the temperature dependence of the trap separation and it appears to tend towards a
maximum limiting value of ∼10−1–100 � cm−1.

2.2. Model

The dc conductivity, σdc, is taken to be the product of the mobile cation number density, n(T ),
the mobile cation charge, +e, and the mobile cation mobility, µ(T ) [7]

σdc = n(T )eµ(T ). (1)

The temperature-dependent number density of mobile cations is taken from the Boltzmann
distribution

n(T ) = ntot exp(−�Eact/kB T ) (2)

where ntot is the total composition determined value and �Eact is the average activation
energy for the conductivity. Below, we will expand equation (2) to include a distribution of
such activation energies. The mobility is the ratio of the mean (thermal) drift velocity in the
direction of the applied electrical field to the magnitude of the applied field

µ(T ) = vx/(∂V/∂x). (3)

The mean drift velocity of the mobile cations is determined as follows. First, a voltage gradient
in the x direction causes the ions to drift in that direction with a mean free path length of λ

between events that stop or alter their drift. The relationship of the cation’s mean free path
to the drift velocity is estimated from a balance between the thermal energy available to the
cation and the additional energy supplied to the cation from the applied electric field. Hence,

m((v0x + �vmax x)
2 + v2

0y + v2
0z)/2 ∼= mv2

0/2 + mv0x�vmax x = kB T + eλ dV/dx (4)
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where v0, v0x and �vmax x are the initial (zero field) thermal velocity of the mobile cations, the
initial (zero field) thermal velocity of the mobile cations in the x direction and the maximum
change in the velocity of the mobile cations in the x direction due to the applied electrical field
(taken to be along the x direction). Note that the mean drift velocity of the cation following
application of the electrical field (�vx = vx(T )) will be the average of the change in velocity
before the field is applied (zero) and the maximum change in velocity after the field is applied
(�vmax x ) and equals �vmax x/2. The approximation recognizes that the mean thermal velocity
is much larger than the change in velocity due to the applied electrical field or, similarly, that
the thermal energy is much larger than the potential energy created by the applied electrical
field, 2500 J mol−1 versus 2.4 × 10−7 J mol−1, respectively, at room temperature. v0x and v0

are related for isotropic motion by

v2
0 = v2

0x + v2
0y + v2

0z = 3v2
0x (5)

and the most probable thermal velocity in the absence of the electrical field is given by [19]

mv2
0/2 = kB T . (6)

Finally, by combining equations (4)–(6) we have

vx (T ) = �vx = 1

2

eλ√
2mkB T/3

∂V

∂x
(7)

which gives ∼4 × 10−4 m s−1 for Ag+ ions at room temperature for an average trap distance
of 2 nm and a potential field of 0.05 V over a 1 mm thick sample. As expected this is much
slower than the most probable thermal velocity of ∼200 m s−1 given by equation (6).

The trap distance is taken to be the parallel average of two trapping distances, λ0 and λ1.
λ0 is proposed to be a limiting ‘frozen structure’ trap distance that determines some intrinsic
limiting value characteristic of the particular glass under study. λ1 is the temperature-dependent
trap distance created by the thermal excitation of cations from their equilibrium sites and, in
this paper, we will assume two possible origins.

In scheme I, we will assume that the distance λ1 arises because the open sites provide
a ‘geometric’ trapping cross section for the mobile carriers. The hypothesis here is that the
trapping site has a finite size, essentially that of the anion, e.g. a non-bridging oxygen in an
oxide glass. A mobile cation in its random migration through the network will then have its
trajectory altered or will eventually be stopped by this trapping anion. In this scheme we will
use an ideal gas representation for the moving carriers.

In scheme II, we will assume that the trapping distance is electrostatic in origin, namely
cation–anion Coulombic attraction, and will therefore use a more sensible ionic lattice plasma
to model the behaviour of the mobile cations. Here, the hypothesis is that a cation migrating
through the disordered network experiences the collective Coulombic interactions of all anions
and cations in the glass and is therefore repelled if it approaches a cation and attracted if it
approaches an anion. In the latter case, the Coulombic attraction can pull the cation into an
anion trap where the effective trapping distance is strongly temperature dependent. At LTs, a
cation will have a relatively low average thermal velocity and can be trapped at larger distances
by an open anion site. At higher temperatures, and for the same anion and cation charges, the
cation will have a higher thermal velocity and can only be trapped at shorter distances where
the Coulomb field is largest: at larger distances the cation can effectively by-pass an anion trap
because of its higher momentum.

In both of these schemes, the average trapping distance is taken to be the parallel average
of the two trapping distances, namely

1

λ(T )
= 1

λ0
+

1

λ1
. (8)
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In scheme I, where we use the ideal gas trapping or scattering cross section, we have

1

λ1
= √

2πd2n(T ) (9)

where πd2 is the trapping cross section. In the electrostatic trapping case, scheme II, we have

d = e2

8πε0ε∞kB T
(10)

which has been derived by equating the centripetal force of the moving cation in the vicinity
of an anion trap with the Coulombic force of attraction between the anion and cation. As is
customary in describing scattering processes, d is taken to be the effective diameter of the
Coulombic potential of the mobile cation and the stationary anion. In this way d is also the
effective radius of the trapping cross section.

Of the parameters in equation (10), all are well known except the limiting high-frequency
optical dielectric constant ε∞. Unfortunately, ε∞ is not well known at this time for the silver
thioborosilicate glasses because we can only measure up to 1 MHz on our impedance analyser
and even at liquid nitrogen temperatures, because the conductivity of these glasses is so high,
the contribution of the mobile ions to the measured dielectric constant is still strong. However,
if we use the most probable thermal velocity calculated from equation (6),which will determine
the interaction of a cation with traps, and an average cation separation distance from neutron
scattering of ∼3 Å [20], a time scale for ionic interaction τ ∼ 3 Å/200 m s−1 ∼ 1.5 × 10−12 s
is estimated. For these reasons, we use the Lorentz–Mossotti relation ε∞ ∼ n2

0 to determine
ε∞ where n0 is the index of refraction.

It is noted that without an intrinsic LT limiting trap distance, λ0, equation (8) predicts that
the trap distance would increase at LTs to the unphysical value of infinity. Hence λ0 essentially
ensures the physically realistic situation that there will always be some longest trap distance
in the glass. As a first approximation to this intrinsic trap distance, we will in scheme II
take its value to be the separation distance determined by the carrier concentration at the glass
transition temperature Tg . That is to say, at Tg there will be some fraction of thermally activated
mobile carriers, determined by a Gaussian distribution of barrier heights, which leads to some
‘frozen-in’ limiting separation between cations. We believe this to be the shortest distance that
the cations can migrate without incurring a trapping site and calculate λ0 using

λ0 = [n(Tg)]
−1/3. (11)

Lastly we will assume that the activation energy barriers in these glasses, as is well-known
and discussed [18, 21–26], are distributed such that equation (2) can be rewritten as

n(T ) =
∑

i

ni e
− �Ei

kB T (12)

where ni is the number density of cations residing in wells with an energy barrier �Ei and
i spans the glass structure and includes all possible cation sites in the glass. For a Gaussian
distribution of �Ei activation energies it can be shown exactly that equation (12) simplifies to

n(T ) = ntot exp

(
−�Eact

kB T
+

s2

2(kB T )2

)
1

2
erfc

(
s√

2kB T
− �Eact√

2s

)
(13)

where erfc is the error function, �Eact is the average energy barrier for the distribution and
s is the population standard deviation of the distribution. Hence, our final equation for the
conductivity using these relationships becomes

σdc(T ) = 1

2

e2n(T )√
2mkB T/3

(λ−1
0 +

√
2πd2n(T ))−1. (14)
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Figure 1. Plot showing the frequency dependence of the real part of the conductivity for
glassy 0.4AgI + 0.6[0.525 Ag2S + 0.475(0.5 B2S3 + 0.5SiS2)] at different temperatures. The low-
frequency polarization data have been removed from this plot to facilitate easier reading. Horizontal
arrows show approximate values for the dc conductivity as determined by the ‘plateau’ value of
the frequency-dependent conductivity.

The temperature-dependent concentration of mobile carriers,n(T ), is taken from equation (13).
In the following, we will fit equation (14) to the dc conductivity reported in figure 1 for the silver
thioborosilicate glasses. We will do this using the two schemes for the trapping mechanism
described above. We will first (scheme I) fit this equation to the conductivity data leaving d as
an adjustable parameter, the lattice gas scattering cross section diameter. In the second ionic
lattice plasma treatment (scheme II), d will be calculated according to equation (10) using
the index of refraction n0 as the only adjustable parameter. In all of this, we will show that
the fit to the experimental data is quite good for all compositions and temperatures and that
all parameters take on physically reasonable values for silver thioborosilicate glasses. For
example, the index of refraction values are constrained to a range expected for such glasses
and are of the order ∼2. Also, the mean activation energy for the distribution is not arbitrarily
adjustable as it must describe the LT-limiting Arrhenius region of the conductivity

3. Experimental details

3.1. Sample preparation

The starting materials AgI, Ag2S and SiS2 used to prepare the zAgI + (1 −
z)[0.525Ag2S + 0.475(0.5B2S3 + 0.5SiS2)] FIC glasses are commercially available in pure
form. B2S3 is not, however, commercially available and was prepared in our laboratory by
the stoichiometric reaction of boron and sulfur powder in an evacuated, carbon-coated silica
ampoule [27].
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All FIC glasses were prepared in an oxygen- and water-free (<1 ppm O2, <1 ppm H2O)
glove box from stoichiometric amounts of AgI (Cerac, Inc. 99.999%), Ag2S (Cerac, Inc.
99.9%), B2S3 and SiS2 (Cerac, Inc. 99.5%). Appropriate amounts of these powders were
weighed into a vitreous carbon crucible and were heated at 850 ◦C for 10 min. The samples
were then checked for weight loss and reheated for an additional 5 min. Weight losses were
checked and were always less than 1%. The liquid was poured into a brass mould at the
anneal temperature, Tg − 50 ◦C, allowed to anneal for 30 min and then cooled at 5 ◦C min−1 to
room temperature. The glasses were carefully annealed so that this process would not occur at
elevated temperatures and in so doing be a possible source of the non-Arrhenius conductivity.

3.2. Impedance spectroscopy

Impedance spectroscopy using a Solartron 1260 impedance/gain phase analyser was used to
determine the dc conductivity of these glasses. A frequency range of 0.01 Hz to 10 MHz was
used with an amplitude of 0.05 V. A time delay of 2 s between data points and a 2 s integration
time were also used to improve the accuracy of the data. Temperature control within the desired
temperature range of −190 to 500 ◦C was ±1 ◦C.

4. Results

4.1. Experimental data

Figure 1 shows the real part of the conductivity as a function of frequency and
temperature for the 0.4AgI + 0.6[0.525Ag2S + 0.475(0.5B2S3 + 0.5SiS2)] glass and reveals
that the dc conductivity, approximately indicted on the curves as an arrow, increases as
temperature is increased. A representative impedance plane plot used to determine the
dc conductivity more accurately in the presence of electrode polarization processes for the
0.4AgI + 0.6[0.525Ag2S + 0.475(0.5B2S3 + 0.5SiS2)] glass is shown in figure 2. The arcs at
high frequency represent the bulk response of the glass to an applied ac electric field and by
determining where the arc intersects with the Z ′ axis, as shown by an arrow on a few of the
arcs, the dc conductivity can be accurately determined. The beginning of a second arc can be
seen at lower frequencies, which is believed to be due to polarization effects at the electrodes.
As the temperature increases, the conductivity also increases and the more difficult it becomes
to accurately determine the dc conductivity. Figure 3 shows the results for the dc conductivity
so determined for all samples at all temperatures. The solid curves through the data points are
guides to the eye and help to show the strong non-Arrhenius behaviour of the conductivity at
high temperatures. The broken straight lines are best fits using an Arrhenius expression for
the conductivity and are used to determine the LT average activation energy for the conduction
process, �E Arr

act (see table 1). As the amount of AgI is increased, so is the deviation from
Arrhenius behaviour, as illustrated in figure 3.

4.2. Fits to the data

Figures 4(A) and (B) show the fits of equation (14) to the conductivity data for the glasses
with z = 0.3 and 0.4 respectively, using scheme I where λ0 and d are taken to be independent
(fitted) parameters. Table 1 shows the values of these parameters found from the fits. It is
noticed that while λ0 is of the order of the atomic spacing, ∼3–5 Å, the d values are relatively
large, of the order of 50–100 Å. The activation energies, �Eact , are similar to those taken from
the LT Arrhenius region of the dc conductivity, �E Arr

act . The fit to the experimental data is
good and the non-Arrhenius behaviour at elevated temperature is reasonably well reproduced.
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Figure 2. Impedance plane plots for the glass 0.4AgI + 0.6[0.525 Ag2S + 0.475(0.5 B2S3 +
0.5SiS2)] at a variety of temperatures illustrating the method used to determine the dc conductivity.
Vertical arrows show how the dc impedance was determined from the minimum point on each curve.
For the higher-temperature curves, where the equivalent circuit electrical relaxation frequency is
beyond the limit of our impedance analyser, the dc impedance was determined by extrapolating the
curve to the real impedance axis.

Table 1. Summary of the parameters used to fit the conductivity data for the zAgI + (1 −
z)[0.525Ag2S + 0.475(0.5B2S3 + 0.5SiS2)] glasses using scheme I where λ0 and d are treated

as completely adjustable (fitted) parameters. The average activation energies, �E Arr
act , obtained

from the Arrhenius fits to the LT conductivity data, are also given.

�E Arr
act (±0.1)

(kJ mol−1) �Eact (±0.1) λ0(±1) (Å) d(±10) (Å)

z Tg(±2)(K) (LT region) (kJ mol−1) (fitted) (fitted)

0.0 631 27.11 27.44 19 100
0.1 561 27.50 25.77 10 20
0.2 542 24.22 25.77 6 100
0.3 525 20.94 20.04 2.1 65
0.4 528 19.97 18.29 5 30

Figures 5(A) and (B) show the fits of equation (14) to the conductivity data for the glasses
with z = 0.3 and 0.4 using scheme II where λ0 and d are calculated according to equations (11)
and (10), respectively. Here λ0 is taken to be an intrinsic trapping site distance frozen in
at Tg and is calculated from the number of thermally activated cations at this temperature.
The parameter d is calculated as the trapping distance (effective diameter) for a Coulombic
trap of unit anion charge embedded in a medium of dielectric constant ε∞ ∼ n2

0. We use
adjustable values of n0, between 1.5 and 2.5, which are considered to be representative of
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Figure 3. Plot of the temperature dependence of the dc conductivity for samples of composition
zAgI + (1 − z)[0.525 Ag2S + 0.475(0.5 B2S3 + 0.5 SiS2)]. The solid curves through the data are
guides to the eye. The broken straight lines through the data are the extrapolations from LTs of

Arrhenius fits, used to determine the average activation energy for the conductivity, �E Arr
act , and

show the level of deviation of the conductivity data away from Arrhenius behaviour at higher
temperatures. The Tg values for the glasses, also given in tables 1 and 2, are shown by vertical
arrows marked with a suitable symbol below the curve for each data set.

Table 2. Summary of the parameters used to fit the conductivity data for the zAgI + (1 −
z)[0.525Ag2S + 0.475(0.5B2S3 + 0.5SiS2)] glasses using scheme II where λ0 was fixed according
to equation (11) and n0 was varied to give ε∞ ≈ n2

0 (via the Lorentz–Mossotti relation) and hence d
via equation (10). In this scheme n0 was restrained to lie within the range of physically acceptable
values for these glasses, i.e. between 1.5 and 2.5.

�Eact (±0.1) s(±0.2) λ0(±1) (Å) n0(±0.1)

z Tg(±2) (K) (kJ mol−1) (kJmol−1) (fixed at Tg) (fitted)

0.0 631 28.68 1.4 24.2 1.5
0.1 561 28.27 1.4 29.3 2
0.2 542 27.85 1.4 30.5 1.8
0.3 525 24.53 1.2 24.3 2
0.4 528 21.20 1.1 19.6 2.3

silver thioborosilicate glasses, and the parameters for scheme II are summarized in table 2.
The Coulomb force acts over a range determined by the dielectric constant of the glass and
the charge state of the anion trap. Smaller dielectric constant glasses with highly charged
anions should exhibit larger trap diameters than those with a larger dielectric constant and
smaller (unit) charged anions. The velocity of a cation will also affect the effective Coulombic
trap distance. As indicated by equation (10), slower-moving cations at lower temperatures
will be affected at larger distances than faster-moving cations at higher temperatures, i.e. the
Coulombic trap distance (diameter) has an inverse temperature dependence.



S1652 S W Martin et al

.

.

.

.

.

.

.

.

.

.

.

.

.

.
σ

Ω
σ

Ω

Figure 4. Fit of the conductivity data for the glass with z = 0.3 (A) or z = 0.4 (B) using scheme
I of the trapping model (see the text). The best-fit values for λ0 and d are given in table 1.

Figures 6(A) and (B) show the composition dependence of the average activation energy,
�Eact , and index of refraction, n0, respectively, used in scheme II. The index of refraction
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Figure 5. Fit of the conductivity data for the glass with z = 0.3 (A) or z = 0.4 (B) using
scheme II of the trapping model. In this scheme λ0 is calculated by using the value of n(T ) at Tg

(equation (11)) and d is calculated according to equation (10) for a Coulombic trap embedded in
a dielectric medium with dielectric constant ε∞ (see the text). The index of refractive values, n0,
used to evaluate ε∞ and hence d are given in table 2 together with the other relevant parameters.
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values track very well the expected behaviour, increasing from a typical value of 1.5 for the
undoped glass up to 2.3 for the highest-doped glass. While these values are obtained from fits
to the data, they are also reasonable values for silver thioborosilicate glasses, i.e. significantly
larger or smaller values than these would be unphysical. The best-fit values for the activation
energies likewise track sensible values as shown by their comparison with the LT Arrhenius
activation energies shown in figure 6(A).

Finally, figure 7 shows the conductivity data for all the glasses with best fits to equation (14)
using scheme II denoted by full curves. The parameters used in equation (14) to fit the data
are summarized in table 2. The fits to all of the conductivity data are quite good and all the
parameters used in the modelling take on physically reasonable values.

5. Discussion

Figures 4, 5 and 7 show that the model developed in this paper is able to fit all of the data
over all of the temperatures ranges with a high quality of fit. Both the LT Arrhenius and
high-temperature non-Arrhenius regions are equally well represented, but the inclusion of the
temperature-dependent Coulombic trap distance of scheme II, as given by equation (10), is
shown to improve the quality of the fit. Indeed, the underlying physics of the Coulombic trap is
likewise a more appealing model for a trap compared with an ideal gas scattering cross section
as given by equation (9).

The basis of the model developed here is that the cations reside in Coulomb wells
determined by the collective attractive potentials of nearby anions. In the silver thioborosilicate
glasses these are the sulfide and iodide anions. Through thermal excitation, the cations are
activated out of these sites and then migrate to other sites through random motions. These
motions necessarily require the cations to migrate through the available interstitial free volume
of the glass. Hence, the conductivity of these glasses is high for a number of reasons. First, the
trapping potential of the anion sites in these glasses is low through the systematic use of weak-
basicity sulfide and iodide anions. Second, the number of cations available for conduction has
been made as high as possible through the use of large fractions of Ag2S and AgI. Third, the
migration pathways through the interstitial free volume of these glasses are made easier through
the use of polarizable Ag+ cations migrating through a structure of polarizable anions whose
bonding is relatively weak. This relatively weak bonding, compared with more refractory
oxide glasses, creates a glass structure that has a smaller mechanical modulus and as such is
more susceptible to the dilation required as the cations migrate through the glassy network [28–
31]. Therefore, the conductivity of these glasses, like that of all other glasses, increases with
increasing temperature through the thermal excitation of mobile carriers.

The perhaps unique feature of the silver thioborosilicate glasses is their exceptionally low
thermal activation energy. This causes, at any one temperature, the number of mobile cations
in the glass to be significantly higher than for other typical ion-conducting glasses. This in
turn causes the number of open anion sites, i.e. sites left vacant due to cation excitation, to
be substantially higher than for these other glasses. Hence, our view of these glasses is that
because the cations are so mobile, the number of trapping sites is higher than for other ion-
conducting glasses. This causes the trap distance, the separation between open available sites,
to become shorter more rapidly than for other lower conductivity glasses. Thereby, at LTs, the
cations migrate through an interstitial glass network having relatively few cation sites and λ1

is long compared with the inter-cation separation distance. At higher temperatures, however,
the interstitial network has a relatively larger number of anion sites and cation trapping events
which limit further migration are viewed as a possible mechanism for the non-Arrhenius
temperature dependence of the conductivity.
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Figure 6. (A) Comparison of the composition dependence of the best-fit values for the average

activation energy, �Eact , using scheme II (circles) and the LT Arrhenius activation energy, �E Arr
act

(diamonds). Note the relative agreement in both the magnitude and composition dependence.
(B) Composition dependence of the best-fit values for the index of refraction (circles). These
values, while not experimentally determined, fall within an acceptable range as determined for
other similar chalcogenide glasses. Note that the observed composition dependence is expected,
i.e. the index of refraction increases with AgI content. The curve through the data is a best-fit
straight line and is shown as a guide to the eye.
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Figure 7. Experimental conductivity data for all of the glasses in the series zAgI + (1 −
z)[0.525 Ag2S + 0.475(0.5 B2S3 + 0.5 SiS2)] and fits according to scheme II using the parameters
given in table 2 (see the text).

In our scheme II representation of the non-Arrhenius conductivity there is only one truly
adjustable parameter, i.e. the average activation energy �Eact , since the index of refraction is
a measurable quantity. This activation energy is not, however, completely adjustable because
the conductivity appears to return to Arrhenius behaviour at LTs and as such the model must
also be capable of modelling this behaviour. The intrinsic jump distance λ0 is likewise not
completely adjustable. It is calculated through equation (11) in scheme II and as such it is
fixed at the Tg of the glass. Finally, the index of refraction is also quite limited in its value
and best fits were obtained when the physically reasonable values shown in figure 6(b) were
used. The quality of fit, using such a restricted set of physically reasonable parameters in a
particularly simple model, is indeed remarkable and strongly suggests that there may in fact
be some merit to the concept of trapping-limited conductivity.

In the future, we will explore the veracity of this model by applying it to other glass-forming
systems that exhibit both typical Arrhenius as well as atypical non-Arrhenius behaviour.
Studies of both Ag+ ion and Li+ ion conductors are in progress and will be reported in the future.
An important study also in progress is measurement of the optical range index of refraction for
these glasses to see if the model predictions are as close as expected. Additionally, since the
model predicts a strong dependence of the Coulomb trap distance on the index of refraction of
the glass, we intend to examine a series of glasses whose carrier concentration, glass transition
temperature, Tg, and other physical properties are closely matched, with the exception that
their index of refraction and hence their optical frequency dielectric constant can be varied
systematically. We will examine both Ag+ and Li+ ion conductors in this study.



Trapping model for the non-Arrhenius ionic conductivity in fast ion-conducting glasses S1657

6. Conclusions

An effective new model of ion conductivity for optimized FIC glasses has been developed.
The essential feature of this model is that the mobile cations in these glasses conduct from
an open available site to the next open available site. In this process, they naturally by-pass
filled or unavailable sites. The thermal excitation of cations out of their equilibrium sites is
taken to be the mechanism for generation of the open and available sites. Hence, the distance
between trapping sites is a strong function of temperature. Two schemes for the trapping
mechanism have been proposed for when a cation interacts with an open site. In the first
and simplest scheme, we used simple ideal gas law scattering theory. This scheme, while
reproducing the main features of the data, does not produce a strong enough temperature
dependence for the conductivity. The second more physically appealing scheme is that of a
Coulombic trap being created when a cation is thermally activated out of its site. The trap
distance becomes temperature dependent through both the thermal creation of a site and also
through the temperature-dependent drift velocity of the cations.

Scheme II is able to accurately reproduce the non-Arrhenius temperature dependence of
the conductivity for the silver thioborosilicate series of chemically optimized FIC glasses.
In this scheme there is in principle only one independent adjustable parameter, the average
activation energy, and the scheme correctly accounts for both the magnitude and composition
dependence of the index of refraction for these glasses. A limiting saturation value for the
conductivity is predicted from the model to be in the range of ∼10−1–100 � cm−1 at room
temperature. This value arises from the competing effects of thermal creation of mobile carriers
and the effective trapping of mobile carriers at short distances.
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